MTH 406: Differential geometry of curves and surfaces

 $(Due \ 13/03)$

Homework IV: Orientation

Problems for turning in

- 1. Prove the assertions in 2.4(viii), and 2.4(xiii) (xiv) of the Lesson Plan.
- 2. Show that a continuous unit normal field on a regular surface must be smooth.
- 3. Show that the real projective plane $\mathbb{R}P^2$ obtained by identifying the antipodal points in S^2 is a nonorientable regular surface.
- 4. Let $f: S \to S'$ be a diffeomrophism between regular surfaces.
 - (a) Show that an orientation on S induces a naturally well-defined orientation on S' with respect to which f is orientation-preserving.
 - (b) Show that an oreintable surface cannot be diffeomorphic to a nonorientable surface.

Problems for practice

- 1. Prove the assertions in 2.4(vii)(b)-(e) of the Lesson Plan.
- 2. Let S be a regular orientable surface with an orientation N. Show that if f is a rigid motion of \mathbb{R}^3 , then f(S) is a regular orientable surface with a naturally induced orientation N' given by $N'(f(p)) = df_p(N)$, for all $p \in S$.
- 3. Let S be a regular surface, $p \in S$, $v \in T_p(S)$ a nonzero vector, and N a unit normal vector to S at p. Prove that there exists a neighborhood $V \ni p$ in S the intersection of V with the plane $p + \operatorname{span}\{v, N\}$ is the image of a regular curve.
- 4. Let S be a regular surface, and let $f : S \to \mathbb{R}$ be a smooth function. Show that there exists a unique tangent field ∇f on S (called the *gradient* of f) with the property

$$df_p(v) = \langle (\nabla f)(p), v \rangle, \forall p \in S \text{ and } v \in T_p(S).$$